Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica
 Lecture 8

Marius A. Marinescu
Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

17 de marzo de 2021

Outline

(1) Properties; Higher-order Partial Derivatives

- Properties of Differentiation
- k th order derivatives and Schwarz Theorem

Outline

(1) Properties; Higher-order Partial Derivatives

- Properties of Differentiation
- kth order derivatives and Schwarz Theorem

Differentiation is a linear operation:

Proposition 4.1: Linearity of Differentiation

- Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two functions that are both differentiable at a point $\mathbf{a} \in X$

Differentiation is a linear operation:

Proposition 4.1: Linearity of Differentiation

- Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two functions that are both differentiable at a point $\mathbf{a} \in X$ and let $c \in \mathbb{R}$ be any scalar.

Differentiation is a linear operation:

Proposition 4.1: Linearity of Differentiation

- Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two functions that are both differentiable at a point $\mathbf{a} \in X$ and let $c \in \mathbb{R}$ be any scalar.
- Then,

1. The function $\mathbf{h}=\mathbf{f}+\mathbf{g}$ is also differentiable at \mathbf{a}

Differentiation is a linear operation:

Proposition 4.1: Linearity of Differentiation

- Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two functions that are both differentiable at a point $\mathbf{a} \in X$ and let $c \in \mathbb{R}$ be any scalar.
- Then,

1. The function $\mathbf{h}=\mathbf{f}+\mathbf{g}$ is also differentiable at \mathbf{a}, and

$$
D \mathbf{h}(\mathbf{a})=D(\mathbf{f}+\mathbf{g})(\mathbf{a})=D \mathbf{f}(\mathbf{a})+D \mathbf{g}(\mathbf{a})
$$

Differentiation is a linear operation:

Proposition 4.1: Linearity of Differentiation

- Let $\mathbf{f}, \mathbf{g}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be two functions that are both differentiable at a point $\mathbf{a} \in X$ and let $c \in \mathbb{R}$ be any scalar.
- Then,

1. The function $\mathbf{h}=\mathbf{f}+\mathbf{g}$ is also differentiable at \mathbf{a}, and

$$
D \mathbf{h}(\mathbf{a})=D(\mathbf{f}+\mathbf{g})(\mathbf{a})=D \mathbf{f}(\mathbf{a})+D \mathbf{g}(\mathbf{a})
$$

2. The function $\mathbf{k}=c \mathbf{f}$ is differentiable at \mathbf{a}, and

$$
D \mathbf{k}(\mathbf{a})=D(c \mathbf{f})(a)=c D \mathbf{f}(\mathbf{a})
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
D \mathbf{f}(x, y)=\left[\begin{array}{ll}
1 & 1 \\
&
\end{array}\right.
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
D \mathbf{f}(x, y)=\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y
\end{array}\right.
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
D \mathbf{f}(x, y)=\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y \\
-y / x^{2} & 1 / x
\end{array}\right]
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
& D \mathbf{f}(x, y)=\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y \\
-y / x^{2} & 1 / x
\end{array}\right] \\
& D \mathbf{g}(x, y)=\left[\begin{array}{cc}
2 x & 2 y
\end{array}\right.
\end{aligned}
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
D \mathbf{f}(x, y) & =\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y \\
-y / x^{2} & 1 / x
\end{array}\right] \\
D \mathbf{g}(x, y) & =\left[\begin{array}{cc}
2 x & 2 y \\
y^{2} e^{x y} & e^{x y}+x y e^{x y}
\end{array}\right.
\end{aligned}
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
D \mathbf{f}(x, y) & =\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y \\
-y / x^{2} & 1 / x
\end{array}\right] \\
D \mathbf{g}(x, y) & =\left[\begin{array}{cc}
2 x & 2 y \\
y^{2} e^{x y} & e^{x y}+x y e^{x y} \\
6 x^{2} & -35 y^{4}
\end{array}\right]
\end{aligned}
$$

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by,

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- Then

$$
\begin{aligned}
D \mathbf{f}(x, y) & =\left[\begin{array}{cc}
1 & 1 \\
y \sin y & x \sin y+x y \cos y \\
-y / x^{2} & 1 / x
\end{array}\right] \\
D \mathbf{g}(x, y) & =\left[\begin{array}{cc}
2 x & 2 y \\
y^{2} e^{x y} & e^{x y}+x y e^{x y} \\
6 x^{2} & -35 y^{4}
\end{array}\right]
\end{aligned}
$$

- \mathbf{f} is differentiable only in $\mathbb{R}^{2} \backslash\{x=0\}$ and \mathbf{g} is differentiable on all of \mathbb{R}^{2}.

Example 1

- Let \mathbf{f} and \mathbf{g} be defined by

$$
\begin{aligned}
\mathbf{f}(x, y) & =(x+y, x y \sin y, y / x) \\
\mathbf{g}(x, y) & =\left(x^{2}+y^{2}, y e^{x y}, 2 x^{3}-7 y^{5}\right)
\end{aligned}
$$

- If we let $\mathbf{h}=\mathbf{f}+\mathbf{g}$, then Proposition 4.1 tells us that \mathbf{h} must be differentiable on all of its domain
- Furthermore,

$$
\begin{aligned}
D \mathbf{h}(x, y) & =D \mathbf{f}(x, y)+D \mathbf{g}(x, y) \\
& =\left[\begin{array}{cc}
2 x+1 & 2 y+1 \\
y \sin y+y^{2} e^{x y} & x \sin y+x y \cos y+e^{x y}+x y e^{x y} \\
6 x^{2}-y / x^{2} & 1 / x-35 y^{4}
\end{array}\right]
\end{aligned}
$$

Example 1

- Some graphical representation.

$$
\frac{\partial f_{3}}{\partial y}=1 / x
$$

Example 1

- Some graphical representation.

$$
f_{2}=x y \sin y
$$

Example 1

- Some graphical representation.

$$
\frac{\partial f_{3}}{\partial x}=-y / x^{2}
$$

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

$$
D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})
$$

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

$$
D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})
$$

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

$$
D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})
$$

2. If $g(\mathbf{a}) \neq 0$

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

$$
D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})
$$

2. If $g(\mathbf{a}) \neq 0$, then the quotient function f / g is differentiable at a:

Proposition 4.2

- Let $f, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in X$.
- Then,

1. The product function $f g$ is also differentiable at a:

$$
D(f g)(\mathbf{a})=g(\mathbf{a}) D f(\mathbf{a})+f(\mathbf{a}) D g(\mathbf{a})
$$

2. If $g(\mathbf{a}) \neq 0$, then the quotient function f / g is differentiable at a:

$$
D(f / g)(\mathbf{a})=\frac{g(\mathbf{a}) D f(\mathbf{a})-f(\mathbf{a}) D g(\mathbf{a})}{g(\mathbf{a})^{2}}
$$

Example 2

- Suppose

$$
\begin{aligned}
f(x, y, z) & =z e^{x y} \\
g(x, y, z) & =x y+2 y z-x z
\end{aligned}
$$

Example 2

- Suppose

$$
\begin{aligned}
f(x, y, z) & =z e^{x y} \\
g(x, y, z) & =x y+2 y z-x z
\end{aligned}
$$

- Then

$$
(f g)(x, y, z)=\left(x y z+2 y z^{2}-x z^{2}\right) e^{x y}
$$

Example 2

- Suppose

$$
\begin{aligned}
f(x, y, z) & =z e^{x y} \\
g(x, y, z) & =x y+2 y z-x z
\end{aligned}
$$

- Then

$$
(f g)(x, y, z)=\left(x y z+2 y z^{2}-x z^{2}\right) e^{x y}
$$

- So that

$$
D(f g)(x, y, z)=\left[\begin{array}{c}
\left(y z-z^{2}\right) e^{x y}+\left(x y z+2 y z^{2}-x z^{2}\right) y e^{x y} \\
\left(x z+2 z^{2}\right) e^{x y}+\left(x y z+2 y z^{2}-x z^{2}\right) x e^{x y} \\
(x y+4 y z-2 x z) e^{x y}
\end{array}\right]^{T}
$$

Example 2

$$
\begin{aligned}
f(x, y, z) & =z e^{x y} \\
g(x, y, z) & =x y+2 y z-x z \\
\operatorname{Df}(x, y, z) & =\left[\begin{array}{lll}
y z e^{x y} & x z e^{x y} & e^{x y}
\end{array}\right] \\
D g(x, y, z) & =\left[\begin{array}{lll}
y-z & x+2 z & 2 y-x
\end{array}\right]
\end{aligned}
$$

- Using Proposition 4.2

$$
\begin{aligned}
& g(x, y, z) D f(x, y, z)+f(x, y, z) D g(x, y, z)= \\
= & {\left[\begin{array}{c}
\left(x y^{2} z+2 y^{2} z^{2}-x y z^{2}\right) e^{x y} \\
\left(x^{2} y z+2 x y z^{2}-x^{2} z^{2}\right) e^{x y} \\
(x y+2 y z-x z) e^{x y}
\end{array}\right]^{T}+\left[\begin{array}{c}
\left(y z-z^{2}\right) e^{x y} \\
\left(x z+2 z^{2}\right) e^{x y} \\
(2 y z-x z) e^{x y}
\end{array}\right]^{T} } \\
= & e^{x y}\left[\begin{array}{c}
\left(y z-z^{2}\right)+\left(x y z+2 y z^{2}-x z^{2}\right) y \\
\left(x z+2 z^{2}\right)+\left(x y z+2 y z^{2}-x z^{2}\right) x \\
(x y+4 y z-2 x z)
\end{array}\right]
\end{aligned}
$$

Outline

(1) Properties; Higher-order Partial Derivatives

- Properties of Differentiation
- kth order derivatives and Schwarz Theorem

How many "second derivatives" does a function have?

How many "second derivatives" does a function have?

Example 3

- Let

$$
f(x, y, z)=x^{2} y+y 2 z
$$

How many "second derivatives" does a function have?

Example 3

- Let

$$
f(x, y, z)=x^{2} y+y 2 z
$$

- The first-order partial derivatives are

$$
\frac{\partial f}{\partial x}=2 x y
$$

How many "second derivatives" does a function have?

Example 3

- Let

$$
f(x, y, z)=x^{2} y+y 2 z
$$

- The first-order partial derivatives are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x y \\
& \frac{\partial f}{\partial y}=x^{2}+2 y z
\end{aligned}
$$

How many "second derivatives" does a function have?

Example 3

- Let

$$
f(x, y, z)=x^{2} y+y 2 z
$$

- The first-order partial derivatives are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x y \\
& \frac{\partial f}{\partial y}=x^{2}+2 y z \\
& \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x y)=2 y
$$

- Similarly, the second-order partial derivatives with respect to y

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x y)=2 y
$$

- Similarly, the second-order partial derivatives with respect to y and z are, respectively,

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x y)=2 y
$$

- Similarly, the second-order partial derivatives with respect to y and z are, respectively,

$$
\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(x^{2}+2 y z\right)=2 z
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The second-order partial derivative with respect to x is,

$$
f_{x x}(x, y, z)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}(2 x y)=2 y
$$

- Similarly, the second-order partial derivatives with respect to y and z are, respectively,

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(x^{2}+2 y z\right)=2 z \\
\frac{\partial^{2} f}{\partial z^{2}} & =\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial z}\right)=\frac{\partial}{\partial z}\left(y^{2}\right) \equiv 0
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The mixed partial derivative with respect to first x and then y

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The mixed partial derivative with respect to first x and then y

$$
f_{x y}(x, y, z)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=
$$

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The mixed partial derivative with respect to first x and then y

$$
f_{x y}(x, y, z)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(2 x y)=2 x
$$

- There are five more mixed partials for this particular function

Example 3

$$
\begin{aligned}
& f(x, y, z)=x^{2} y+y 2 z \\
& \frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2}+2 y z, \quad \frac{\partial f}{\partial z}=y^{2}
\end{aligned}
$$

- The mixed partial derivative with respect to first x and then y

$$
f_{x y}(x, y, z)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(2 x y)=2 x
$$

- There are five more mixed partials for this particular function

$$
\frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial z \partial x}, \quad \frac{\partial^{2} f}{\partial x \partial z}, \frac{\partial^{2} f}{\partial z \partial y}, \frac{\partial^{2} f}{\partial y \partial z}
$$

Properties; Higher-order Partial Derivatives 000000000000000000000
k th order derivatives and Schwarz Theorem

General k th-order partial derivatives

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.

General k th-order partial derivatives

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.
- The k th-order partial derivative with respect to the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ (in that order) is the iterated derivative

General k th-order partial derivatives

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.
- The k th-order partial derivative with respect to the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ (in that order) is the iterated derivative

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \cdots \partial x_{i_{2}} \partial x_{i_{1}}}=
$$

General k th-order partial derivatives

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.
- The k th-order partial derivative with respect to the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ (in that order) is the iterated derivative

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \cdots \partial x_{i_{2}} \partial x_{i_{1}}}=\frac{\partial}{\partial x_{i_{k}}} \cdots \frac{\partial}{\partial x_{i_{2}}} \frac{\partial}{\partial x_{i_{1}}}\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

where $i_{1}, i_{2}, \ldots, i_{k}$ are integers in the set $\{1,2, \ldots, n\}$ (possibly repeated)

General k th-order partial derivatives

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar-valued function of n variables.
- The k th-order partial derivative with respect to the variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ (in that order) is the iterated derivative

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \cdots \partial x_{i_{2}} \partial x_{i_{1}}}=\frac{\partial}{\partial x_{i_{k}}} \cdots \frac{\partial}{\partial x_{i_{2}}} \frac{\partial}{\partial x_{i_{1}}}\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

where $i_{1}, i_{2}, \ldots, i_{k}$ are integers in the set $\{1,2, \ldots, n\}$ (possibly repeated)

- Equivalent notation,

$$
f_{x_{i_{1}} x_{2} \cdots x_{i_{k}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Example 4

- Let

$$
f(x, y, z, w)=x y z+x y^{2} w-\cos (x+z w)
$$

Example 4

- Let

$$
f(x, y, z, w)=x y z+x y^{2} w-\cos (x+z w)
$$

- We then have
$f_{y w}(x, y, z, w)=\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial w} \frac{\partial}{\partial y}\left(x y z+x y^{2} w-\cos (x+z w)\right)$

Example 4

- Let

$$
f(x, y, z, w)=x y z+x y^{2} w-\cos (x+z w)
$$

- We then have

$$
\begin{aligned}
f_{y w}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial w} \frac{\partial}{\partial y}\left(x y z+x y^{2} w-\cos (x+z w)\right) \\
& =\frac{\partial}{\partial w}(x z+2 x y w)=2 x y \\
f_{w y}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial y} \frac{\partial}{\partial w}\left(x y z+x y^{2} w-\cos (x+z w)\right)
\end{aligned}
$$

Example 4

- Let

$$
f(x, y, z, w)=x y z+x y^{2} w-\cos (x+z w)
$$

- We then have

$$
\begin{aligned}
f_{y w}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial w} \frac{\partial}{\partial y}\left(x y z+x y^{2} w-\cos (x+z w)\right) \\
& =\frac{\partial}{\partial w}(x z+2 x y w)=2 x y \\
f_{w y}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial y} \frac{\partial}{\partial w}\left(x y z+x y^{2} w-\cos (x+z w)\right) \\
& =\frac{\partial}{\partial y}\left(x y^{2}+z \sin (x+z w)\right)=2 x y
\end{aligned}
$$

Example 4

- Let

$$
f(x, y, z, w)=x y z+x y^{2} w-\cos (x+z w)
$$

- We then have

$$
\begin{aligned}
f_{y w}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial w} \frac{\partial}{\partial y}\left(x y z+x y^{2} w-\cos (x+z w)\right) \\
& =\frac{\partial}{\partial w}(x z+2 x y w)=2 x y \\
f_{w y}(x, y, z, w) & =\frac{\partial^{2} f}{\partial w \partial y}=\frac{\partial}{\partial y} \frac{\partial}{\partial w}\left(x y z+x y^{2} w-\cos (x+z w)\right) \\
& =\frac{\partial}{\partial y}\left(x y^{2}+z \sin (x+z w)\right)=2 x y
\end{aligned}
$$

This example suggests that there might be a simple relationship among the mixed second partials

Theorem 4.3 (Schwarz)

- Suppose that X is open in \mathbb{R}^{n}.

Theorem 4.3 (Schwarz)

- Suppose that X is open in \mathbb{R}^{n}.
- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous first- and second-order partial derivatives.

Theorem 4.3 (Schwarz)

- Suppose that X is open in \mathbb{R}^{n}.
- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous first- and second-order partial derivatives.
- Then the order in which we evaluate the mixed second-order partials is immaterial.

Theorem 4.3 (Schwarz)

- Suppose that X is open in \mathbb{R}^{n}.
- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous first- and second-order partial derivatives.
- Then the order in which we evaluate the mixed second-order partials is immaterial.
- That is, if i_{1} and i_{2} are any two integers between 1 and n

Theorem 4.3 (Schwarz)

- Suppose that X is open in \mathbb{R}^{n}.
- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous first- and second-order partial derivatives.
- Then the order in which we evaluate the mixed second-order partials is immaterial.
- That is, if i_{1} and i_{2} are any two integers between 1 and n, then,

$$
\frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{2}}}=\frac{\partial^{2} f}{\partial x_{i_{2}} \partial x_{i_{1}}}
$$

Definition 4.4: Smooth Functions

- Assume X is open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.

Definition 4.4: Smooth Functions

- Assume X is open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- Function f is said to be of class C^{k} if its partial derivatives up to order at least k, exist and are continuous on X.

Definition 4.4: Smooth Functions

- Assume X is open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- Function f is said to be of class C^{k} if its partial derivatives up to order at least k, exist and are continuous on X.
- Function f is said to be of class C^{∞}, or smooth, if it has continuous partial derivatives of all orders on X

Definition 4.4: Smooth Functions

- Assume X is open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- Function f is said to be of class C^{k} if its partial derivatives up to order at least k, exist and are continuous on X.
- Function f is said to be of class C^{∞}, or smooth, if it has continuous partial derivatives of all orders on X

Definition 4.4: Smooth Functions

- Assume X is open in \mathbb{R}^{n}.
- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function.
- Function f is said to be of class C^{k} if its partial derivatives up to order at least k, exist and are continuous on X.
- Function f is said to be of class C^{∞}, or smooth, if it has continuous partial derivatives of all orders on X

A vector-valued function $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is of class $C^{k}\left(C^{\infty}\right)$
if and only if

Each of its component functions is of class $C^{k}\left(C^{\infty}\right)$

Theorem 4.5 Schwarz (extended)

- Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar-valued function of class C^{k}
- Then the order in which we calculate any kth-order partial derivative does not matter
- Suppose
- (i_{1}, \ldots, i_{k}) are any k integers (not necessarily distinct) between 1 and n, and
- $\left(j_{1}, \ldots, j_{k}\right)$ is any permutation (rearrangement) of these integers
- Then

$$
\frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}}=\frac{\partial^{k} f}{\partial x_{j_{1}} \cdots \partial x_{j_{k}}}
$$

Example 5

- Let

$$
f(x, y, z, w)=x^{2} w e^{y z}-z e^{x w}+x y z w
$$

Example 5

- Let

$$
f(x, y, z, w)=x^{2} w e^{y z}-z e^{x w}+x y z w
$$

- We verify Theorem 4.5

$$
\frac{\partial^{5} f}{\partial x \partial w \partial z \partial y \partial x}=2 e^{y z}(y z+1)=\frac{\partial^{5} f}{\partial z \partial y \partial w \partial^{2} x}
$$

